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Many studies involving gene expression data choose a “bottom-up” approach, looking to isolate effects from a single gene or group of genes for 
their impact on the phenotype or pathology of the organism in question. At the same time, the starting point for medical examination of complex 
organisms, such as the human body, often begins with a “top-down” approach, checking homeostatic equilibrium by using indicators such as body 

temperature or pulse to probe for abnormalities within the underlying system. In this paper, we use recent results in complex network theory to 
show evidence of a parameter that can be used for such a top-down approach to genomic analysis as well. We apply these methods to the well-
studied Golub leukemia dataset and a more recent dataset involving resistance to HIV-1 infection to indicate that there is linkage between this 
parameter and phenotype.  
 
 
1.   INTRODUCTION 
Many studies involving gene expression data choose a 
“bottom-up” approach to variations in clinical 
phenotypes, looking to isolate causality to a single gene 
or group of genes. At the same time, everyday clinical 
medicine begins with a top-down approach, checking 
systemic homeostatic equilibrium using simple 
measurements, such as body temperature or pulse, to 
probe for variations within the underlying phenotype. 
 

We use recent results in complex network theory 
and current studies of the role of noise in cellular 
processes1-3   to show evidence of a parameter that can 
be used for such a top-down systemic approach in 
genomics. This parameter, which we call the 
characteristic noise parameter or CNP, quantifies the 
scaling of an informative type of genome-wide 
biochemical noise (the analogous “temperature”). We 
evaluated CNP from microarray data samples in the well-
studied Golub leukemia dataset and samples from a more 
recent dataset involving resistance to HIV-1 infection. 
Both tests indicated linkage between CNP and 
phenotype. The HIV study pointed to the utility of this 
approach for identification of HIV-1 resistance and its 
possible causes.  

2.   METHODS 
• We examined two competing processes within the 
dynamics of the genome. One of synchronization 
between gene network “hubs” and one of 
desynchronization caused by noise from individual 
genes or smaller gene networks1-3,5. 
 
• The scaling of correlated gene cluster sizes in S. 
cerevisiae microarray data (Spellman 1998) produced 

evidence of a “homeostatic” dynamic equilibrium 
between these two tendencies. This equilibrium 
manifests as a type of global biochemical noise 
throughout the genome. 
 
• We then applied similar methods to compare scaling of 
datasets against phenotype for subjects with two types 
of leukemia (AML and ALL) in Golub (1999) and 
subjects identified as being resistant or non-resistant  to 
HIV-1 infection in  McLaren (2009). The role of noise 
has been strongly implicated  in HIV-1 infection4. 

2.1.   The Noise Parameter (CNP) 
The equation describing the scaling of this form of 
global noise involves three premises: 
 
1. Synchronization is a type of percolation process in 
the genome. 
 
2. Desynchronization is a type of “anti-percolation” 
process3. 
 
3. The topology of gene networks is scale-free5,6. 
 

 Nav = (M/log(M))S (1) 

 
Eq. (1) represents a stochastic equilibrium for 
conditions 1-3.  Nav and M are dependent on a 
correlation threshold C. The scaling parameter S is a 
constant.  In the case of gene expression networks: 
 
• Nav is the average number of links to a group of G gene 
expression values from all other groups of size G. A 
link is defined as a correlation value between it and 



  
  
  
  

another group of size G above a given correlation 
threshold C (e.g. > C = .95). 
 
• M is the largest number of links found for any group. 
S we call the characteristic noise parameter (CNP). 

3.   RESULTS 
 

 
Fig. 1. This log-log graph represents the power law scaling (linearity) 
predicted in Eq. (1). The data used was temporal microarray data from 
yeast. Each line (color) represents a different time slice of the data, 
varied by starting time and size G. To generate the lines 19 different 
values of C ranging from .95 to .05 in .05 increments were used. 
 
 

 
Fig. 2. For this figure we used an ensemble of 6-gene groups (G=6) 
and static gene expression values. The blue and the red markings 
represent versions of the same ensemble where the gene ordering has 
been randomized. The green marking represents a Monte Carlo model 
of the same data. This graph gives evidence that Eq. (1) represents an 
equilibrium for a type of global noise in the (yeast) genome. 
 
 

 
Fig. 3. The blue markings represent CNP values derived from 
microarray data sampled from 17 subjects identified as HIV-1 
resistant. The red markings represent CNP values derived from 10 
subjects who were identified as non-resistant. Note that the resistance 
group is shifted to higher CNP values than the non-resistant group 
with a clear delineation. The percentages on the graph denoting 
confidence of HIV-1 resistance versus CNP value are normalized for 
the difference in sample size. 
 

 
Fig. 4. The red markings represent the CNP values derived from 
microarray data obtained from 45 subjects identified with Acute 
Lymphoblastic Leukemia (ALL). The blue markings represent the 
CNP values from 25 subjects identified with Acute Myeloid Leukemia 
(AML). The two groupings are shifted relative to each other (ttest, p 
~.05) and there is delineation. The percentages on the graph are 
normalized for sample size. 

4.   CONCLUSIONS 
There is evidence that CNP is a single parameter 
measurement giving characteristic information about the 
genome and its relation to phenotype. CNP could be of 
particular importance in diseases that have been linked 
to genetic noise, such as AIDS. 
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